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In paper I abstract vectors [e), their adjoints (el, dyads such as le)(el, and abstract linear 
operators were related to graphs which are in general directed. With an Hermitian operator one 
gets equivalence classes of undirected graphs with or without loops and multi-lines. The pre- 
sent paper II gives rules for the multiplication of such graphs based on their underlying dyad 
algebra. The results may be used in the evaluation of the outcome of successive applications of 
operators for observables as in the case of the powers of a one-electron Hamiltonian in the 
method of moments, or in using projection operators, electron density, and the like. 

1. Introduction 

In paper  I [1] we made  correspondences between abstract  vectors {lei)), their 
adjoints {(el  I } belonging to abstract  linear vector spaces Vn and V +,  dyads such as 
~ei)(ejl } E Vn x V + or abstract  linear operat ion acting on Vn, and directed graphs 

G. Products  o f  di-graphs were defined related to operators expressed as objects in 
a dyad  algebra. Such multiplication of  di-graphs involved "product  graphs"  Ge, 
which have two kinds of  lines and two types of  vertices [1]. A theorem indicated 
how the "p roduc t  vertices" and one kind of  lines are contracted out f rom Ge yield- 
ing an ordinary  di-graph Ge as the result o f a  G x G multiplication. 

Observables in quan tum mechanics correspond to Hermit ian  operators,  such 
as the one-electron Hamil tonian  h, or its finite version projected out  in Vn x V +, 
where V~ is the finite-dimensional valency shell subspace of  the full infinite dimen- 
sional one-electron space of  a molecule. It is well known f rom matr ix  based graphs 
[2], that  symmetr ic  matrices lead to undirected or line graphs. With  a dyad  algebra 
based formula t ion  [3,4], Hermit ian  operators lead to equivalence classes of  undi- 
rected graphs, such as the VIFs "valency interaction formulae"  of  molecules, trans- 
formable  within each class by pictorial VIF-rules derived f rom covariance 

principles [3-5]. 
The present paper (II) extends the algorithms for multiplying graphs based on 
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their underlying dyad algebra, to undirected graphs G which in turn may be used 
in evaluating the outcome of successive application of operators of observables, 
powers or functions of Hermitian operators, powers of h (as in the method or 
moments [6,7]) or electron density d, projection operators on h, d, and the like. 

2. Definit ions,  dyad algebra-graph identifications 

An undirected graph G is a collection ofn vertices and p lines. 
A vertex (oi) corresponds to the sum of a vector lei)E Vn and its adjoint 

(ei] ~ V +, or a superposition of a (directed) out-vertex (i ~--)--) and an in-vertex 
(i o--(--) [11, 

i. ~ leo + (ei I . (1) 

Thus vertex (io) is shown in more detail as 

i . ~ i ~  . (2) 

A line in G, (i ~---~j) is a product of two vertices like eq. (2) multiplication being 
done with the left factor indicated by wiggle lines ( ~  and the right factor by 
ordinary lines ( ), product order being always from wiggle to ordinary lines as 
discussed in ref. [1]. Thus 

° i X j o ~-- i ~ , , m ,  ~ x " ~ j ,  (3) 

where only the terms from eqs. (1)--(3) survive if there is a net flow from a (~,-,,~) 
to a (~--)--) line 

i j 
• X • + 

corresponding to 

i j 
• X • + 

Thus 

• X • = X + ~ . ~ . . X  ( 4 )  

j i 
• x • ~ le,><ejl + l e j> (e , I .  (5) 

io X j o = i ~ . ~ j = i  e _ - j .  (6) 
A loop results as 

i ~ x ~ i ~ [lei) q- (eli] × [leo + (eil] (7) 

i ~ = ~ i = ~ i = ( ~ i " ~ [ e i ) ( e i l .  

A no-loop standard (sta r) graph G is a superposition of lines and corresponds to 
a sum ofsymmetrized dyads Aij, 
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G = 

J 

i j . j ,  .k 
k 

= 

+ 

(8) 

o r  

~ k 

G ~ Aij + Ajk + Ajk + Afl, 

where, e.g., 

Aq = B,j + Bij (9) 

withBij = le~)(ejl ~ (i = ) j), 
o r  

A• -- [le;>, (ej]+ = lei)(ej] + lej)(ei[, (10) 

the anti-commutator [, ]+ of a vector with its adjoint. 
A graph G. on n vertices with no loops is the sum of any of its directed Gn and 

that Gn's reverse G.. The G. is the G. with all line directions reversed, e.g., 

(11) 

as seen from eq. (8). 
If there are loops it is simplest to leave them on either G or itsG since a directed 

and undirected loop are the same, eq. (7). 

L E M M A  1 

A graph Gn on n vertices with p lines has 2P directed Gn's. Therefore G, can be 
drawn in 2p-1 ways as G. + G.. 

Proof 

Each line in G, can be drawn with one or the other direction, thus giving 2 p dis- 
tinct G,. Each G, has its unique reverse G, with all lines reversed. Thus there are 
2P/2 distinct ways to write G, +G,. 
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3. P r o d u c t  o f  t w o  l ines 

As in ref. [1], in a product Gc x GD we shall write the left factor with wiggle 
lines, the right with ordinary lines. Product is defined always from wiggle to ordin- 
arylines. 

With two lines (ij) x (kl) we have 
j k 

i , , / ~ /  X " " - - , ~  = 0  if i , j C k ,  l .  (12) 

LEMMA 2 
• j 

(13) 

/'roof 
The product is 

i < ~ J  X ~ = (14a) 

As in ref. [1] a preliminary product graph G? is obtained by superposing the 
two factors, resulting in a graph of two kinds of lines and two types of vertices (cf. 
ref. [1]). Only net flows from wiggle to ordinary lines at a vertex yield non-zero 
terms. Thus eq. (14a) becomes 

j. 
(ij) x ( j l )=  i ~ " / ~ "  £ only. (14b) 

Then by the theorem of [1], the common vertex (i) contracts out yielding 

(ij) x ( ] l ) = i *  ~ - l (14c) 

(This proof can be done alternatively with the dyads algebraically 

nijnj l  = Bil . ) (14d) 

Since the other terms in eq. (14a) give zero, we have also AijAfl = Bit. 

LEMMA 3 
The anti-commutator of two lines having one vertex label in common contracts 

out that common vertex and yields a single (undirected) line. 

P r o o f  

' ~ + = ~  + .¢ (15a) 
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but by eqs. (14) 
J 

i ¢~~'.£= i . . - - , - - ~ l  

and 
J 

i . / ~ ' ~ ' . l  = i . -  

with their sum being (i ~-----el). 
(Or with dyads: 

[Ao. , Aft]+ : Ail) 

(15b) 

(15c) 

4. Square o f  a line 

LEMMA 4 

The Square of a line is two disconnected loops. 

(16a) 

P r o o f  

i ¢ 5 ; 2  a , i<TPJ --,  = + 
~ <72>5 

(16b) 

and by the theorem ofref. [1] net flow vertices are contracted out. Thus 

(16b)=i  D +  Q ~ j =  (i Q Qj). 

(Algebraically: 

4 = A,;A,j = a,jAj, = aj,A0 

A} = A,, + A~ .) 

(16c) 

COROLLARY 
If there are non-standard (non-unity) strengths {n # 1 } on the lines, we get 
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loops each with strength ~2. 

5. Products involving lines and loops 

Two loops: 

,0 Oj 

1 X = 
I I 

where ~, ~' are strengths # O. 
Loop x line: 

i [ 5. J 

- 0 

( ;  ~j)  

(direction of final line is away from the wiggle line). 
Line and loop: 

9 i , - - 5 - ,~  5 x -_ . .  _ 
t ~ j 

(direction is away from the wiggle line). 

t j 

(17) 

(18) 

(19) 

6. Ant i -commutator  o f  line and loop 

j + "  j i t i l - - i  j 

(20) 
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(from eqs. (18), (19) or algebraically). 
Line and free vertices 
If an operator A,j is acting on a vector [u) e V,, 

lu> = c~llel> + c~21e2) + . . .  c~ + le , ) ,  

A~jlu> = Aj, lu> = ~j le;> +  ,lej>. (21a) 

Or: 

" t  d n 

i j 

using eq. (14), vertex contraction on each vertex. 

7. P roduc t  o f  two g r a p h s  

To calculate Ge = Gc x GD, where the factors may or may not have loops, 
draw the left factor with wiggle lines, than superimpose Gc and GD to get the com- 
posite pre-product Gp, a graph of two kinds of lines and two types of vertices as in 
ref. [1]. For example, 

1 2 1 2 

--~/ -- 3 4 

= G p  = 

(22) 

The only non-zero terms in Ge result when we go from a wiggle line to adjacent 
ordinary lines. Thus 
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Gp :I i ~  
1 .......... / 

+ 

(2 ,/I2 
3 3 

-.I- 
3 

1 2 

+ 3" l 
) 

(23) 

+ + 
4 

Each ( )-block in eq. (23) is for one wiggle line out of the Gc. There are five 
such lines in Gc, hence five blocks, each block showing its wiggle lines connected to 
its ordinary lines; more compactly the blocks in Gp are 

I~X~4 2 14~ 3 Gp = X - - /  ~5  + 5 

1 2 
2 

+ + (23') 

4 3 
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Using the vertex contractions as in the previous sections, in each term of eqs. 
(23), (23') we get 

°-((? : \ .  i . /)  
5 t (/ , 3  \ )  

+ + ~ : 4" 

$ 

(24) 

2 / 2 )  
4 

4 4. ~ 

Or Gp going into the contracted graph Gp = Gc x GD, first in each block: 

Gp - - ~  Gp = 
/ ~  + 1..//5 

s "1- 

+ ' N j  ~ 
3 

Adding up eq. (24') 

Gp = 

+ + 

4 

(24') 
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Note that (3~1) lines superimposed gave a strength of 2 (written on the line), two 
loops of std strength= 1 at each at vertex 1 gave a loop of strength = 2, and opposite 
di-lines at (14) gave an undirected line (14), and similarly at (24) which, however, 
has also a di-line. 

8. Ano the r  e x a m p l e - s q u a r e  of  a graph 

Let 

G = 

2 

3 

corresponding, e.g., to a one-electron Hamiltonian h. Calculate h 2. 

2 
G 2 = G x G = Gp = ~ - ~ - - ~ ' %  

W /  
3 

Done as in the previous example, we get 
Gp ~ Gp = 

9 
(26) 

All lines are undirected as expected from both h and therefore h 2 being Hermitian. 
The loops have strengths equal to the degrees ("star-value") of respective vertices 
in G. 

Trace of a graph is given by the sum of the strengths of its loops (cf. e.g. ref. 
[1]). Thus for h ~ G, the trace ofh 2 ~ G 2 = Ge is 

Trh  2 = Z ~ i = 2 + 3 + 2 + 1  = 8  
6a 
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which agrees with the theorem (refs. [2,6,7]) and references therein] that  T rh  2 
= 2p, where p is the number  of lines in the unsquared G ~., h. 

For  multiple products, e.g., Ge = Gc x GD x GF it is best to do the last two fac- 
tors first and reduce their G'e---~G' e = GD x GF, then multiply the resulting 
Gc x Gl,, = Gp. 
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